Canadian Census of Marine Life Mike Sinclair Bedford Institute of Oceanography Nova Scotia, Canada ### Focus on support of Ecosystem Approach to Management (EAM) What is EAM? Maritimes experience - Research agenda - Community level - Species level - Population / Genetics level - Causality challenges #### What is EAM? - Two Areas of Experience - Eastern Scotian Shelf & Gulf of Maine - Challenges - Diverse perspectives of basic concepts - Tension between pragmatism & elegance - National policy evolving during implementation efforts ### Management Area for EAM Biodiversity considered across wide range of spatial scales Many existing administrative areas for fisheries & other ocean uses - Challenge - Relative importance of ecological patterns versus administrative convenience ### **Atlantic Ecoregions** # Beaufort Sea Greenland Placentia Bay/ Grand Banks Gulf of St. Lawrence QC ON NB NS Scale: 1:30,000,000 Killometers White States of America Scotian Shelf ### Ongoing Dialogue on ESSIM / GOMA Boundary #### Eastern Scotian Shelf Integrated Management Planning Area # Planning Process for Conservation Objectives of EAM ### IM Plan Hierarchical Structure #### **National** Conservation Objectives (Conceptual) #### **IM Area Level** Conservation Objectives (Conceptual) Operational Objectives (Ecosystem Health) #### **Sector Level** Operational Objectives ### SubSector Level Operational Objectives #### Conservation of Species & Habitat Conserve Conserve Conserve **Ecosystem** Component's Physical / Components Role Chemical (Biodiversity) Productivity) **Properties** Maintain Maintain Conserve Communities **Primary** Physical Production **Properties** Maintain Maintain **Bottom Species Trophic** Structure Water Maintain Maintain Column **Populations Populations** Conserve Chemical **Properties CoML** related Water **Objectives** Quality Biota Quality ### Overarching Conservation Objectives GB and ESS Conservation Objectives developed consistent with this framework ### Steps to Operationalize IM Plan - Identify Conservation Issues & Ecosystem Components & state IM Plan Conservation Objectives using national framework as guide - Determine Appropriate Ocean Sectors to implement IM Plan Conservation Objectives - 3. Define Operational Objectives for IM Plan Area (cumulative impacts) - 4. Define Operational Objectives for each Ocean Sector ### Identification of Issues & Ecosystem Components in IM Area (step #1) - Determine IM Area specific Issues - Many possible ways to do - Scientific community review - Stakeholder consultations - Result is Layman's understanding of Issues at IM Area Level - Sort these by National Objectives - Identify Ecosystem Components associated with each Issue ### Identification of Issues & 'Ecosystem Components' in IM Area | National Conservation Objective | Fisheries | Oil & Gas | Transport | Military | Other Stakeholders (NGOs
& Public) | Specific Ecosystem Components
on ESS related to the Issues | | |---|--|---|--|--|--|---|--| | Maintain communities | Modification of Bottom habitat | Effects on Benthic Biota | | Impact of
Explosives on
Bottom Diversity | Protection of Fragile Benthic
Communities I.e. Coral and in
Gully | Diversity of the benthic community, the coral community and the high diversity benthic community in the Gully | | | Maintain species | Protection of Species at Risk, low productivity & narrow niche species | Drilling Waste and Noise
(seismic & acoustic)
Effects on marine
mammals & sea turtles | Impact of Shipping Noise on
Marine Mammals, Ship/w hale
collisions, Introduction of Invasive
Species through Ballast w ater | Impact of Noise on
Marine life | Protection of Northern
Bottlenose Whale &
Leatherback Turtles & other
Species at Risk | Overall Species Diversity & specifically
the status of species designated
Endangered or Threatened | | | Maintain populations | Maintenance of Population
Richness w ithin Management
units | | | | | Genetic Diversity of populations under
Human Pressure | | | Maintain primary production | | Impact of Produced Water
Discharges on Primary
Productivity | Impact of pollution on Primary
Productivity | | | Productivity of Base of Food Chain | | | Maintain trophic structure | Harvesting of forage species | | | | Harvesting of Krill | Productiviity of Each Trophic Level (incl. Forage species) and Energy Transfer along Food Chain | | | Maintain mean generation times of populations | Fishing Mortality on directed & by-
catch species | Drilling Waste and Noise
(seismic & acoustic)
Effects on fish larvae, fish
and shellfish | Impact of oily discharges on
Seabirds | | | Grow th & Recruitment Productivity of
Individual Populations | | | Conserve ecosystem's
physical features - critical
bottomscape | | Drilling muds disposal and contaminant degradation | | | | Sediment Quality | | | Conserve ecosystem's physical features - water column properties | Fishing Noise Impacts on
Ecosystem | Seismic Impacts on
Ecosystem | Shipping Noise Impacts on
Ecosystem | Miltary Noise
Impacts on
Ecosystem | | Overall Sound Environment | | | Conserve ecosystem's
chemical features - water
quality | Ship-source Pollution | Produced Water
Discharge, Contaminant
Biodegradation &
Biotransformation | Oil Pollution | Ship-Source
Pollution | | Overall Chemical Environment | | | Conserve ecosystem's chemical features - biota quality | | Bioaccumulation | Biocontamination | | | Physiological Proces s 9 of Biota | | | | | | | | | | | ### Ecosystem Objectives for IM Area (step #1, biodiversity example) A. Conservation Objectives Related to Biodiversity | National Conservation
Objective | Ecosystem Component | Conservation Objective (in increasing order of specificity) | | | |---|---|---|--|--| | · | Diversity of Benthic Communities | • | Protect Benthic Communities susceptible to disturbance | | | | | | Prevent significant adverse alteration of each benthic community | | | Maintain communities | | | Maintain area of disturbance within identified limits | | | within bounds of natural | Diversity of Fragile Coral • Protect Fragile Benthic Communities | | Protect Fragile Benthic Communities | | | variability | Community | | • Prevent significant adverse alteration of Coral Communities in Stone Fence area | | | | High Diversity Benthic Community in Gully | | Protect High Diversity Benthic Communities | | | | | | Prevent significant adverse alteration of Benthic Communities in the Gully | | | Maintain anacias within | Overall Species Diversity | | Protect Natural Communities from Invasive Introductions | | | | | | Prevent significant adverse introduction of exotic species | | | | | | Maintain Continued Existence of all Species | | | Maintain species within bounds of natural | | | Minimize impact of human activity on non-target species | | | variability | | | Minimize incidental mortality | | | variability | Status of Species at Risk | • | Restore Abundance of Species at Risk | | | | | • Manage recovery of SAR (e.g. Cod, Bottlenose Whale, Leatherback, Cu | | | | | | | Harbour Porpoise) | | | Maintain populations | Genetic Diversity of populations under human pressure | | Maintain meta-population structures | | | within bounds of natural | | | Maintain Components of Populations impacted by human activity | | | variability | | | Prevent elimination of spawning/breeding component by human activity | | Driven by issues specific to IM Area ### Sectors Responsible for Implementation | Ecosystem Components on ESS related to the Issues | IM Plan
(Ecosystem
Health) | Air Pollution from NE US | Water
Pollution from
GSTL | Fisheries
Sector | Stock Fishing
Plans | Oil & Gas
Sector | Transportati
on Sector | Defense
Sector | |---|----------------------------------|--------------------------|---------------------------------|---------------------|------------------------|---------------------|---------------------------|-------------------| | Diversity of Benthic
Community | X | | | Х | Х | Х | | | | Diversity of Fragile Coral
Community | X | | | | X | X | | X | | High Diversity Benthic
Community in Gully | Х | | | | Х | Х | | X | | Overall Species Diversity | X | | | | X | | X | | | Status of Species at Risk | Х | | | | X | | X | | | Genetic Diversity of Populations under Human Pressure | Х | | | | Х | | | | | Productivity at Base of Foodchain | Х | Х | Х | | | | | | | Productivity of Forage Species | Х | | | Х | | | | | | Productivity of Each Trophic Level | Х | | | | | | | | | Energy Transfer along Food
Chain | Х | | | Х | | | | | | Growth Productivity | X | | | | Х | | | | | Recruitment Productivity | Х | | | | Х | | | | | Sediment Quality | Х | | | | | Х | | | | Sound Environment | Х | | | | | Х | | Х | | Chemical Environment | Х | | Х | | | Х | | 14 | #### **Area Operational Objectives (step #3)** | Productivity | | |---------------------------|--| | Primary Productivity | • Control alteration of <u>vital nutrient concentrations</u> affecting primary production at the base of the food chain by algae | | Community Productivity | Manage <u>trophic level removals</u> taking into account consumption requirements of higher trophic levels | | Population Productivity | Manage <u>total removals</u> taking into account system production capacity Keep fishing mortality moderate | | 1 opaiation 1 roudetivity | Allow sufficient <u>spawning biomass</u> to escape exploitation | | | Promote positive <u>biomass change</u> when biomass is low | | | Target <u>% size/age/sex</u> of capture to avoid wastage | | | Limit disturbing <u>activity in spawning areas/seasons</u> | | | Manage <u>discarded catch</u> for all harvested* species | | Biodiversity | | | Species Diversity | Control incidental <u>bycatch or mortality</u> for all non-harvested[*] species | | Biodiversity | | |----------------------|---| | Species Diversity | Control incidental <u>bycatch or mortality</u> for all non-harvested* species | | | Minimize <u>change in distribution</u> of invasive species | | Population Diversity | • Distribute population component mortality in relation to component biomass | | | | | Habitat | | | | Manage <u>area disturbed</u> of bottom habitat types | | | Limit amounts of contaminants toning and maste introduced in habitat | #### **CoML** related **Objectives** - Limit amounts of contaminants, toxins and waste introduced in habitat - Minimize amount of lost gear - Control noise or light level/frequency **Indicator** ### Preliminary Evaluation of Georges Bank FMPs (step #4, example) - Blue: high relevance that currently receive attention - Red: high relevance & require attention - · Others: of low relevance ### **Current Compliance with EAM** - Most attention presently given to managing exploitation of commercial resources - Emerging priorities - Managing discards and incidental mortality of non-target species - -Limiting disturbance of benthic habitat CoML research reflects these priorities ### CoML Research Agenda Biodiversity Research At Community/Seascape Level ## Are current fishery closures & gear restrictions adequate to protect benthic habitat? Can benthic community spatial patterns be predicted from geological, oceanographic & biological observations? - What proportion of each benthic habitat type needs to be protected? - Sensitivity of benthic communities ### What is relationship between size & location of protected areas & benthic community conservation? **Current Closures** ### Community/Seascape Biodiversity Modelling Approach ### **Expected Life History Traits according to Southwood Model** | | Physiologically
Benign
(High Productivity) | Physiologically
Adverse
(Low Productivity) | | | |-------------------------|--|--|--|--| | Physically
Stable | Offspring medium & small Longevity medium | Offspring few & large
Longevity long | | | | Physically
Disturbed | Offspring many small
Longevity short | Offspring medium large
Longevity medium | | | #### **Scope for Growth** #### **Disturbance** ### **Scope for Growth** ### **Sensitivity of Benthic Communities** ### Community/Seascape Biodiversity Empirical approach ### The Multibeam Sonar Revolution "Aerial photography" of the sea floor #### Ocean Mapping: Browns Bank - Bathymetry: colour-coded, sun- illuminated relief - Geology: surficial sediment type derived from traditional geoscience ground truth surveys - Habitat: statistically-derived communities of benthic species - Sea floor photography: benthic habitat "Foundation maps and data sets to deliver Integrated Oceans Management" #### **Benefits: Living Resources** - Commercial scallop fishery - electronic fishing charts - fishing time reduced 75% - self-imposed management practices - reduced environmental impact - preservation of other commercial habitats - Fisheries management - stock assessment & management practice - prerequisite for "sustainable harvest plans" in quota fisheries - Conservation - foundation knowledge base for creation of MPAs ### Development of Indicators & Reference Points for Management - Establishment of indicators & reference points for benthic communities - Indicators relatively easy to define (e.g. area of disturbance of each community / seascape type) - Reference points a challenge (e.g. % allowable disturbance) ### Physiographic regions - 9 of 14 previously-defined regions for Census of Marine Life Program* are intercepted - Coverage varies 10 95% of specific region areas - Two prospective regions (continental rise and abyssal plain) added *M. Jakobsson and L. Incze: http://www.usm.maine.edu/gulfofmaine-census/Docs/Research/Posters.htm ### CoML Research Agenda Biodiversity Research at Species Level # Can fisheries management & industry respond to large scale species distributional changes? - Investigate biogeographic characteristics of fish/invertebrate species& how these respond to circulation/mixing - Use of OBIS project of CoML # PC1 GULF STREAM FLOUNDER FOURSPOT FLOUNDER FAWN CUSK-EEL SPOTTED HAKE BUTTERRISH RED HAKE GOOSEFISH (ANGLER) #### **Species Scale Distributions** in bottom communities consistent with circulation & mixing patterns Movement in transition zones in response to North Atlantic Oscillation (NAO) Mahon et. al. 1998 #### When NAO Positive Tendency for Northern Transition Zone to move South & Southern Transition Zones to move North Are these patterns Predictable? #### NAO Winter Anomaly - Linkage of Scotian Shelf with larger North Atlantic atmospheric system - Different response to NAO north & south of Halifax - Periodic? Predictable? #### How should species-at-risk be monitored? - Investigate whether bottom trawl surveys provide reliable indicators of abundance - Cusk hard to sample but show dramatic decline in abundance; is this real or due to contraction to preferred habitat? Issues with other species (e.g. Barndoor Skate) ### Barndoor Skate & Surveys Size is Important Longline Survey samples all size groups Trawl Survey samples predominantly immature skate Monitoring species at risk requires consistent time series of Spawners #### CoML Research Agenda Biodiversity Research at Population / Genetic Level #### CoML Research Agenda Causality & Cumulative Effects Understanding role of biodiversity in functioning of marine ecosystems ## What are management implications of systematic removal of large fish on ecosystem functioning? - ESS ecosystem regulation - bottom up or top down? - Frank et al (2003)suggests top down #### Western Scotian Shelf Evidence supports bottom-up control - Food chain structure not changed - functional redundancy: dogfish approximate equivalent to cod in trophic interaction terms - small pelagics held in check unlike ESS - ESS no functional equivalent to cod in sufficient abundance (elasmobranch species – 7%, on average, of total groundfish biomass) - Compositional changes in WSS fish community much less than on ESS suggesting former is more stable **Biodiversity key to Ecosystem Resilience to Disturbance** #### Species Richness & Ecosystem Control #### **Overfishing** - Reduces species richness - May cause flip from bottom – up to top – down control (Frank et al., 2007) Need to develop quantitative understanding of relationships amongst exploitation & species richness & ocean climate | Overarching
Conceptual
Objective | Planning Area
Conceptual
Objective | Planning Area
Operational
Objective | Fisheries Sector
OO | Groundfish
Fishery OO | Oil & Gas
Sector OO | Transport
Sector OO | Defense Sector
OO | |--|---|---|------------------------|--------------------------|------------------------|------------------------|----------------------| | | Diversity of Benthic
Communities | | | | | N/A | N/A | | Community
Biodiversity | Diversity of Fragile
Coral Community | | N/A | | | N/A | | | | High Diversity Gully
Benthic Community | | N/A | | | N/A | | | | Overall Species
Diversity | | N/A | N/A | N/A | | N/A | | Species Biodiversity | SAR Diversity | | N/A | | N/A | N/A | N/A | | | | | N/A | | N/A | | N/A | | Population Biodiversity | Genetic Diversity | | N/A | | N/A | N/A | N/A | | Primary Productivity | Productivity at base of food chain | | N/A | N/A | N/A | N/A | N/A | | | | | N/A | N/A | N/A | N/A | N/A | | | Productivity of Forage
Species | | | N/A | N/A | N/A | N/A | | Trophic Structure | Trophic Level
Productivity | | N/A | N/A | N/A | N/A | N/A | | | | | N/A | N/A | N/A | N/A | N/A | | | Energy transfer | | | N/A | N/A | N/A | N/A | | | Growth Productivity | | N/A | | N/A | N/A | N/A | | Population Generation
Time | Recruitment
Productivity | | N/A | | N/A | N/A | N/A | | | | | N/A | N/A | | N/A | N/A | | | Sediment Quality | | N/A | N/A | | N/A | N/A | | Physical Features | | | N/A | N/A | | N/A | N/A | | | Sound Environment | | N/A | N/A | | N/A | | | | Chemical
Environment | | N/A | N/A | | N/A | N/A | | Chemical Features | | | N/A | N/A | | N/A | N/A | | | Physiological
Processes | | N/A | N/A | | N/A | N/A | | | | | N/A | N/A | | N/A | N/A | ## Assessment Report of the Future Suite of Conceptual & Operational Objectives defines EAM in Planning Area Colour indicates Performance Of Operational Objective Green: Good Yellow: Caution Red: **Poor** #### **Conclusions** Canadian CoML is making critical contributions to implementation of biodiversity objectives of EAM